Corrigé 7

Exercice 1. Montrer que la série $\sum_{k\in\mathbb{Z}} \frac{1}{|k|!} z^k$ a pour anneau de convergence $A(0,\infty) = \mathbb{C}^*$.

Démonstration. La partie régulière de la série est

$$\sum_{k>0} \frac{z^k}{k!},$$

qui a pour rayon de convergence ∞ . La partie singulière est donnée par

$$\sum_{k>1} \frac{w^k}{k!},$$

où on a posé w=1/z. Son rayon de convergence est ∞ également, et on en déduit que l'anneau de convergence de $\sum_{k\in\mathbb{Z}}\frac{1}{|k|!}z^k$ est $A(0,0,\infty)$, comme annoncé.

Exercice 2. On considère la fonction

$$f(z) = \frac{1}{(z-1)(z-2)} \ .$$

Trouver son développement en série de Laurent en 0 :

- dans le disque |z| < 1;
- dans la couronne 1 < |z| < 2;
- dans la couronne |z| > 2.

Démonstration. Tout d'abord, notons que l'on peut séparer f en éléments simples ;

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{1}{z-2}$$

— Sur le disque |z|<1 on développe chaque élément simple en série géométrique :

$$\frac{-1}{z-1} + \frac{1}{z-2} = \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{1-z/2} = \sum_{k=0}^{\infty} z^k - \frac{1}{2} \sum_{k=0}^{\infty} (z/2)^k = \sum_{k=0}^{\infty} (1 - \frac{1}{2^{k+1}}) z^k$$

— dans l'anneau 1 < |z| < 2, on va développer la deuxième fraction comme série géométrique, cependant pour la première on utilisera l'astuce :

$$\frac{1}{z-1} = \frac{1}{z} \cdot \frac{1}{1-1/z} = \frac{1}{z} \sum_{k=0}^{\infty} z^{-k} = \sum_{k=0}^{\infty} z^{-k-1} = \sum_{k=-1}^{-\infty} z^k$$

et cette série de Laurent converge quand |1/z| < 1 ie quand |z| > 1. En somme, en additionnant les deux séries évoquées plus haut, on obtient une série de Laurent avec anneau de convergence comme voulu :

$$f(z) = \sum_{k=-1}^{-\infty} -z^k + \sum_{k=0}^{\infty} \frac{-1}{2^{k+1}} z^k$$

Pour résumer, les coefficients sont : $a_k = -1$ quand $k \le -1$ et $a_k = -2^{-k-1}$ sinon

— sur la couronne |z| > 2, on utilise l'astuce évoqué plus haut sur les deux séries :

$$\frac{1}{z-1} = \frac{1}{z} \cdot \frac{1}{1-1/z} = \sum_{k=-1}^{\infty} z^k$$

et

$$\frac{1}{z-2} = \frac{1}{z} \cdot \frac{1}{1-2/z} = \frac{1}{z} \sum_{k=0}^{\infty} 2^k z^{-k} = \sum_{k=-1}^{-\infty} 2^{-(k+1)} z^k$$

On se convainc que la deuxième série ci-dessus converge quand |z| > 2 et donc on aura

$$f(z) = -\sum_{k=-1}^{-\infty} z^k + \sum_{k=-1}^{-\infty} 2^{-(k+1)} z^k = \sum_{k=-1}^{-\infty} (2^{-(k+1)} - 1) z^k$$

Exercice 3. Trouver le développement en série de Laurent en 0 de la fonction

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)} .$$

Démonstration. Notons que l'on peut facilement trouver une série de Laurent ou entière pour $\frac{-2}{1+z^2}$ en utilisant une série géométrique. Pour cette raison, on sépare notre fonction f en éléments simples, mais en gardant z^2+1 comme un des dénominateurs. En effet on aura :

$$\frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)} = \frac{-2}{z^2 + 1} + \frac{1}{z - 2}$$

Regardons maintenant les défférentes séries de laurent que l'on peut obtenir : f a des singularités en i, -i et 2. On aura alors le disque |z| < 1, l'anneau 1 < |z| < 2 et la couronne |z| > 2. On procède de la même manière que dans l'exercice 1.

— sur |z| < 1:

$$f(z) = -2\sum_{k=0}^{\infty} (-z^2)^k - \frac{1}{2}\sum_{k=0}^{\infty} (z/2)^k$$

— sur l'anneau :

$$f(z) = \frac{-2}{z^2} \cdot \frac{1}{1+z^{-2}} - \frac{1}{2} \sum_{k=0}^{\infty} (z/2)^k = \frac{-2}{z^2} \sum_{k=0}^{\infty} (-z^{-2})^k - \frac{1}{2} \sum_{k=0}^{\infty} (z/2)^k$$

— sur la couronne :

$$f(z) = \frac{-2}{z^2} \cdot \frac{1}{1+z^{-2}} + \frac{1}{z} \frac{1}{1-2/z} = \frac{-2}{z^2} \sum_{k=0}^{\infty} (-z^{-2})^k + \frac{1}{z} \sum_{k=0}^{\infty} 2^k z^{-k}$$

On obtient les séries de Laurent voulues sous la forme attendue en distribuant les éventuels facteurs devant chaque somme, puis en les combinant.

Exercice 4. Soit $a \in \mathbb{R}$. Calculer

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2}.$$

Démonstration. On a

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2} = \int_0^{2\pi} \frac{dt}{(e^{it} - a)(e^{-it} - a)} = \frac{1}{i} \oint \frac{dz}{(z - a)(1 - az)}.$$

Si |a|<1 c'est la formule de Cauchy pour la fonction $\frac{2\pi}{1-az}$ en a et l'intégrale est donc $\frac{2\pi}{1-a^2}$. Si |a|>1 c'est la formule de Cauchy pour la fonction $-\frac{2\pi}{a(z-a)}$ en $\frac{1}{a}$ et l'intégrale est donc encore $\frac{2\pi}{a^2-1}$.

Donc, pour tout $a \neq \pm 1$,

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2} = \frac{2\pi}{|a^2 - 1|}.$$

Puisque pour tout $t \in [0, 2\pi]$ on a

$$0 \le 1 - \cos t \le \frac{1}{2}t^2,$$

l'intégrale diverge quand a = 1 car

$$\frac{1}{2}\int_0^{2\pi}\frac{dt}{1-\cos t}\geq \int_0^{2\pi}\frac{dt}{t^2}=\infty.$$

Similarly, since $0 \le 1 + \cos t = 1 - \cos(t - \pi) \le \frac{1}{2}(t - \pi)^2$, we have a non-intagrable singularity at $t = \pi$ when a = -1.

Exercice 5. Prouver que une fonction holomorphe $f:U\setminus\{z_*\}\to\mathbb{C}$ a un pôle d'ordre N>0 en $z_*\in U$ si et seulement si N est le plus petit entier tel que $z\mapsto |z-z_*|^N\,|f(z)|$ soit bornée au voisinage de z_* .

Démonstration. On suppose $z^* = 0$. Supposons qu'il existe r > 0, un entier naturel N et un réel M > 0 tels que $|z|^N |f(z)| \le M$ pour tout $z \in D(0,r)$. Par le Théorème 201, on a alors pour tout $0 < \epsilon < r$ et pour tout k < -N

$$|a_k| = \frac{1}{2\pi} \left| \oint_{\partial D(0,\epsilon)} \frac{f(z)}{z^{k+1}} dz \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(\epsilon e^{it})|}{\epsilon^{k+1}} \epsilon dt$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{M}{\epsilon^{N+k}} dt = \frac{M}{\epsilon^{N+k}}.$$

Puisque k + N < 0 et la borne est valide pour tous $0 < \epsilon < r$, on a que $a_k = 0$ et donc 0 est un pôle au plus d'ordre N. Since N is the minimal one such that $|z|^N |f(z)|$ is bounded near zero, zero is a pole of order exactly N.

Let us now prove the reciprocal statement: let f have a pole of order N at zero. Consider its Laurent series at A(0,0,R), where R is small enough so that the annulus is fully contained inside $U: f(z) = \sum_{k=-N}^{\infty} a_k z^k$. Obviously, $|z|^N |f(z)|$ is bounded near zero, while $|z|^{N-1} |f(z)| \ge |a_{-N}| |z|^{-1} - \sum_{k=0}^{\infty} |a_{k-N+1}| |z|^k$ goes to infinity when |z| goes to zero as long as $a_{-N} \ne 0$.

Exercice 6. Soit U un domaine contenant z_* et $f:U\setminus\{z_*\}$ holomorphe. Montrer que si pour tout $N\geq 1$, la fonction $z\mapsto |z-z_*|^N\,|f(z)|$ n'est pas bornée au voisinage de z_* , alors f a une singularité essentielle en z_* .

 $D\acute{e}monstration$. A nouveau, on suppose $z^*=0$. Supposons maintenant que 0 est un pôle d'ordre fini N. Il existe donc un r>0 t.q. pour tout $z\in D(0,r)$

$$f(z) = \sum_{k=-N}^{\infty} a_k z^k,$$

et la fonction $z^N f(z) = \sum_{k=0}^{\infty} a_{k-N} z^k$ peut être completée en 0 en choisissant $z^N f(z)|_{z=0} = a_{-N}$. En particulier, elle est holomorphe et donc bornée dans un voisinage de 0, ce qui contredit l'hypothèse. Ainsi f ne peut avoir de pôle ni de singularité effaçable en 0 et doit donc y avoir une singularité essentielle, ce qui conclut la preuve.

Alternativement, on peut justifier qu'une fonction holomorphe avec une singularité en z_* a un développement en série de Laurent qui converge autour de z_* (voir remarque 205), et donc, par l'exercice prédédent, puisque f n'a ni une singularité effaçable, ni une singularité polaire, elle a forcément une singularité essentielle.

Exercice 7. Montrer que si une fonction $f:U\to\mathbb{C}$ a un pôle d'ordre N en z_* , alors

$$|f(z)||z-z_*|^{N-1} \underset{z \to z_*}{\underset{z \to z_*}{\longrightarrow}} +\infty$$
.

Démonstration. Dans un voisinage de $z^* = 0$, on a

$$z^{N-1}f(z) = \sum_{k=-1}^{\infty} a_{k-N+1}z^k.$$

Comme la fonction entière $z^{N-1}f(z)-\frac{a_{-N}}{z}=\sum_{k=0}^{\infty}a_{k-N+1}z^k$ converge dans le même voisinage, elle converge aussi en 0. Elle est donc bornée dans le voisinage choisi et on a donc

$$|z^{N-1}||f(z)| \ge \frac{|a_{-N}|}{|z|} - \left|\sum_{k=0} a_{k-N+1} z^k\right| \ge \frac{|a_{-N}|}{|z|} - M,$$

qui tend vers ∞ quand $z \to -0$, car $a_{-N} \neq 0$.

Exercice 8. Soit U un domaine et soit $z_* \in U$. Démontrer le théorème suivant (Casorati-Weierstrass) : Si une fonction holomorphe $f: U \setminus \{z_*\} \to \mathbb{C}$ a une singularité essentielle en z_* , alors pour tout $w \in \mathbb{C}$, il existe une suite $(z_n)_n$ avec $z_n \xrightarrow[n \to \infty]{} z_*$ telle que

$$f(z_n) \underset{n \to \infty}{\longrightarrow} w$$
.

Démonstration. Supposons qu'il existe r>0 et $w\in\mathbb{C}$ t.q. $|f(z)-w|\geq r$ pour tous z dans un voisinage de z^* . On considère donc la fonction $g(z)=\frac{1}{f(z)-w}$ qui est bornée dans ce voisinage de z^* et donc admet un prolongement en z^* . Comme f est non-bornée dans un voisinage de z^* , on a forcément $g(z^*)=0$. La fonction g ayant donc un zéro d'ordre fini en z^* , on en déduit que $f(z)=\frac{1}{g(z)}+w$ a un pôle de même ordre en z^* , ce qui contredit l'hypothèse que la singularité est essentielle.