- $\bullet\,$ Pour les questions avec vrai/faux, il est demandé de justifier vos assertions.
- Par exemple, si vous dites qu'une fonction est bijective, il est *impératif* que vous expliquiez *pourquoi* (ou que vous disiez que ça a été vu en cours, ou que c'est évident (si c'est vraiment le cas)).
- $\begin{array}{l} \bullet \ \ \text{On note} \ \mathbb{C}^* = \mathbb{C}\backslash \{\underline{0}\}, D\left(z,\epsilon\right) = \{w\in\mathbb{C}: |w-z|<\epsilon\}, \overline{D}\left(z,\epsilon\right) = \{w\in\mathbb{C}: |w-z|\leq\epsilon\}, \\ \mathbb{D} = D\left(0,1\right), \overline{\mathbb{D}} = \overline{D}\left(0,1\right), \partial \mathbb{D} = \overline{\mathbb{D}}\backslash \mathbb{D}, \mathbb{R}_+ = \{x\in\mathbb{R}: x\geq 0\}, \mathbb{R}^* = \mathbb{R}\backslash \{0\} \\ \text{et} \ \mathbb{R}_+^* = \mathbb{R}_+ \cap \mathbb{R}^*. \end{array}$
- On rappelle qu'un réseau $\Lambda \subset \mathbb{C}$ est un ensemble de la forme $\{m\mu + n\nu : m, n \in \mathbb{Z}\}$ pour $\mu, \nu \in \mathbb{C}^*, \mu/\nu \notin \mathbb{R}$.

1. Soit $f:\mathbb{C}^* \to \mathbb{C}$ une fonction holomorphe. Alors on a

$$\lim_{n \to +\infty} \int_{0}^{2\pi} f\left(e^{it}\right) e^{-int} \mathrm{d}t = \lim_{n \to -\infty} \int_{0}^{2\pi} f\left(e^{it}\right) e^{-int} \mathrm{d}t = 0.$$

Si vrai, prouvez-le, si faux, donnez un contre-exemple.

Vrai. Pour une fonction holomorphe sur \mathbb{C}^* , on a qu'elle est donnée par une série de Laurent $\sum_{n=-\infty}^{\infty} a_n z^n$; on voit (soit en utilisant la formule vue en classe, soit directement) que $\int_0^{2\pi} f\left(e^{it}\right) e^{-int} \mathrm{d}t$ donne le coefficient a_n . Comme la série est censée converger sur \mathbb{C}^* , elle converge aussi en 1, et cela donne que $\sum_{n=-\infty}^{\infty} a_n$ doit converger. Et donc $a_n \to 0$ quand $n \to \pm \infty$.

2. Soit $f: \mathbb{D} \to \mathbb{D}$ une fonction holomorphe surjective avec f(0) = 0. Alors il existe $\theta \in \mathbb{R}$ tel que $f(z) = e^{i\theta}z$. Vrai ou faux? Si vrai, prouvez-le, si faux, donnez un contre-exemple.

Faux, prenons par exemple $f\left(z\right)=z^{2}$ (notons que si on avait injective en plus, ça serait vrai).

3. Soient $f,g:\mathbb{R}\to\mathbb{R}$ des fonctions \mathcal{C}^∞ telles que f/g admet un prolongement analytique sur \mathbb{C} . Alors f et g admettent un prolongement analytique sur \mathbb{C} . Vrai ou faux? Si vrai, donnez une preuve, si faux, donnez un contre-exemple.

Faux, prenons par exemple $f(x)=g(x)=1/\left(x^2+1\right)$. Leur rapport admet un prolongement analytique sur $\mathbb C$ tout entier, mais individuellement elles ont des pôles sur $\mathbb C$.

4. Soit $f:\mathbb{D}\setminus\{0\}\to\mathbb{C}$ une fonction holomorphe telle que f'/f est méromorphe sur \mathbb{D} . Alors f est méromorphe sur \mathbb{D} . Vrai ou faux? Si vrai, prouvez-le, si faux, donnez un contre-exemple.

Faux, prenons par exemple la fonction $f(z)=e^{1/z}$ qui n'est pas méromorphe, mais telle que f'/f l'est.

5. Pour $t \in \mathbb{R}$, notons $f_t : \mathbb{R}_+^* \to \mathbb{R}$ la fonction définie par $f_t(x) = x^t$. Pour quelles valeurs de t est-ce qu'il existe un prolongement analytique de f_t à un domaine U avec $\mathbb{R}^* \subset U \subset \mathbb{C}$.

Pour toute valeur de $t \in \mathbb{R}$, il existe un prolongement analytique: prenons $U = \mathbb{C} \setminus i\mathbb{R}_-$ (le plan fendu par la demi-droite imaginaire négative), qui contient \mathbb{R}^* . On y prend la détermination de l'argument dans $(-\pi/2, 5\pi/2)$ (par exemple), qui détermine un log log et on prend $f_t(z) = \exp(t \log(z))$.

6. Soit f une fonction entière telle que

$$\sup_{w\in\mathbb{C}}\limsup_{R\rightarrow+\infty}\frac{1}{2\pi i}\oint_{\partial D(0,R)}\frac{f'\left(z\right)}{f\left(z\right)-w}\mathrm{d}z=1.$$

Alors il existe $\alpha, \beta \in \mathbb{C}$ tels que $f(z) = \alpha z + \beta$. Vrai ou faux? Si vrai, justifiez, si faux, donnez un contre-exemple.

Vrai. La formule nous dit que le nombre de solution à l'équation f(z)=w pour w donné est toujours au plus 1. Par conséquent la fonction est injective. Si on regarde le développement en série à l'infini de f (si vous n'êtes pas à l'aise avec ça, prenez g(z)=f(1/z) au voisinage de 0), on a qu'il ne peut pas avoir une singularité essentielle, car sinon par Casorati-Weierstrass on aurait une contradiction avec l'injectivité; il ne peut pas y avoir un pôle d'ordre n>1 non plus car sinon on aurait plusieurs préimages pour un point donné (on serait un polynôme de degré n>1). On est donc un polynôme d'ordre 1, ce qui l'énoncé.

7. Soit $\mathbb{H}_0 = \{z \in \mathbb{C} : \Re \mathfrak{e}(z) > 0\}$. Pour $z \in \mathbb{H}_0$, posons $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \mathrm{d}t$. Montrez que Γ satisfait

$$\Gamma\left(z\right) = \frac{\Gamma\left(z+1\right)}{z}$$

pour tout $z \in \mathbb{H}_0$ et qu'en conséquent Γ s'étend en une fonction holomorphe sur $\mathbb{C} \setminus \mathbb{Z}_-$, où $\mathbb{Z}_- = \{0, -1, -2, -3, \ldots\}$.

La convergence sur \mathbb{H}_0 suit du fait que $\left|t^{z-1}e^{-t}\right| = \left|t^{\Re\mathfrak{e}(z)-1}e^{-t}\right|$ qui est clairement intégrable sur $[0,\infty)$ pour $\Re\mathfrak{e}(z)>0$. La fonction Γ est holomorphe sur \mathbb{H}_0 : il est facile de voir que sa dérivée est $(z-1)\Gamma(z)$ (on doit faire une petite permutation intégrale et dérivée, mais tout se passe bien, vu que l'on intègre contre e^{-t}). Ensuite, on a que Γ peut être étendue sur $\{z\in\mathbb{C}:-1<\Re\mathfrak{e}(z)\leq 0\}\setminus\{0\}$ en 'copiant' les valeurs de $\{z\in\mathbb{C}:0<\Re\mathfrak{e}(z)\leq 1\}$ et en les divisant par z (cela ne marche pas en 0 car on devrait diviser par 0). Ensuite on étend sur $\{z\in\mathbb{C}:-2<\Re\mathfrak{e}(z)\leq -1\}\setminus\{-1\}$ en copiant les valeurs sur $\{z\in\mathbb{C}:-1<\Re\mathfrak{e}(z)\leq 0\}\setminus\{0\}$ et divisant par z et ainsi de suite.

8. Montrez que

$$\sum_{n=2}^{\infty} \frac{1}{n^s \ln n}$$

converge sur $\mathbb{H}_1 = \{z \in \mathbb{C} : \Re (z) > 1\}$, et que

$$\sum_{n=2}^{\infty} \frac{1}{n^s \ln n} - \int_2^{\infty} \frac{1}{x^s \ln x} \mathrm{d}x,$$

s'étend en une fonction holomorphe sur $\mathbb{H}_0 = \{z \in \mathbb{C} : \Re (z) > 0\}.$

On doit d'abord estimer $\left|\frac{1}{n^s \ln n}\right| = \frac{1}{n^{\Re \epsilon(s)} \ln(s)}$. Maintenant, on a que $\sum \frac{1}{n^{\alpha} \ln n}$ converge pour $\alpha > 1$ (et en fait diverge en $\alpha = 1$, mais ce n'est pas la question), car c'est borné par $\sum \frac{1}{n^{\alpha}}$. Maintenant, pour montrer qu'on a l'extension sur \mathbb{H}_0 on procède comme pour la fonction ζ :

$$\int_{2}^{\infty} \frac{1}{x^{s} \ln x} dx = \sum_{n=2}^{\infty} \int_{n}^{n+1} \frac{1}{x^{s} \ln x} dx$$

et on regarde

$$\sum_{n=2}^{\infty} g_n\left(s\right)$$

avec

$$g_{n}(s) = \frac{1}{n^{s} \ln n} - \int_{n}^{n+1} \frac{1}{x^{s} \ln x} dx = \int_{n}^{n+1} \left(\frac{1}{n^{s} \ln n} - \frac{1}{x^{s} \ln x} \right) dx$$
$$= \int_{n}^{n+1} h_{s}(n) - h_{s}(x) dx$$

avec $h_s\left(x\right)=1/\left(x^s\ln x\right)$. On a $|h_s\left(n\right)-h_s\left(x\right)|\leq\sup_{y\in[n,n+1]}|h_s'\left(y\right)|$ par l'inégalité des accroissements finis. Or

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(1/\left(x^{s} \ln x \right) \right)' = \frac{s \log x + 1}{x^{s+1} \log^{2} x}$$

donc

$$\sup_{x \in [n,n+1]} \left| h_s'\left(x\right) \right| \leq \sup_{x \in [n,n+1]} \left| \frac{s \log x + 1}{x^{s+1} \log^2 x} \right| \leq \sup_{x \in [n,n+1]} \left| \frac{2s \log^2 x}{x^{s+1} \log^2 x} \right| = \left| \frac{2s}{x^{\Re \mathfrak{e}(s)+1}} \right|$$

ce qui nous donne $\sum_{n=2}^{\infty}g_{n}\left(s\right)$ convergente pour $\Re\mathfrak{e}\left(s\right)>0$.

9.